metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Lin Chen,^a Xian-Hong Yin,^b† Min-Yu Tan,^c Chun-Gu Xia^a* and Kai-Bei Yu^d

^aOSSO, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China, ^bChemistry Department, Guangxi University for Nationalties, Nanning 530006, People's Republic of China, ^cCollege of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China, and ^dAnalysis Center, Chengdu Branch of Chinese Academy of Science, Chengdu 610041, People's Republic of China

+ Present address: College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China.

Correspondence e-mail: eagletiger@vip.sina.com

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(C-C) = 0.007 \text{ Å}$ H-atom completeness 79% R factor = 0.033 wR factor = 0.089 Data-to-parameter ratio = 12.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The asymmetric unit of the title compound, $(C_6H_{21}N_4)$ -[Tb($C_7H_3NO_4$)₃]·6H₂O, consists of a $(C_6H_{21}N_4)^{3+}$ cation, and a [$(C_7H_3NO_4)_3$ Tb]³⁻ anion, and six molecules of water. In the anion, three pyridine-2,6-dicarboxylate ligands are coordinated to the Tb^{III} atom *via* the N atom of the pyridine ring and two O atoms of different carboxylate groups. The coordination polyhedron around Tb may be described as a pseudotricapped trigonal prism. The crystal packing is stabilized by electrostatic interactions and intermolecular hydrogen bonds

involving the cation, anion and water molecules.

2,2',2"-Nitrilotris(ethylammonium) tris(pyridine-2,6-

dicarboxylato- $\kappa^3 O, N, O'$)terbate(III) hexahydrate

Comment

Pyridine-2,6-dicarboxylic acid (H_2pdc) exhibits biological activity (Pocker & Fong, 1980; Scapin *et al.*, 1997). The crystal structure of $H_2pdc \cdot H_2O$ has been known for many years (Takusagawa *et al.*, 1973). It is also a versatile ligand, known to coordinate as a neutral, monobasic or dibasic chelating agent and function as a bidentate, bridging or meridional tridentate ligand (Gielen *et al.*, 1987; Preut *et al.*, 1988; Chessa *et al.*, 1991; Håkansson *et al.*, 1993; Lainé *et al.*, 1995; Koman *et al.*, 2000; Nathan & Mai, 2000; Okabe & Oya, 2000; Matković-Čalogović *et al.*, 2002). As part of our studies on rare-earth complexes of H_2pdc , we present the crystal structure of the title complex, 2,2',2''-nitrilotris(ethylammonium) tris(pyridine-2,6-dicarboxylato)terbate(III) hexahydrate, (I).

The asymmetric unit of (I) consists of a $[\text{Tb}(\text{pdc})_3]^{3-}$ anion, a $(C_6\text{H}_{21}\text{N}_4)^{3+}$ cation and six water molecules (Fig. 1). The C– O distances involving the coordinated O atoms [1.260 (5)– 1.290 (5) Å] are longer than those involving the uncoordinated O atoms [1.229 (6)–1.244 (5) Å] (Table 1). A discrete trigonal prism is formed by two triangles, defined by two sets of carboxylate O atoms (O1/O5/O11) and (O3/O7/O9). Atoms N1, N2 and N3 cap the discrete trigonal prism to form a discrete tricapped trigonal prism. Atoms Tb, N1, N2 and N3 are nearly coplanar, with Tb having the largest deviation, of 0.013 (1) Å. The bond angles around the central N atom (N4) of the $(C_6\text{H}_{21}\text{N}_4)^{3+}$ cation vary from 110.3 (4) to 112.7 (4)° and the sum of the angles [334.6 (4)°] indicates that the N atom is Received 9 September 2002 Accepted 8 October 2002 Online 25 October 2002

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of the molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are shown at the 40% probability level. Solvent water molecules have been omitted for clarity.

in a pyramidal configuration. The crystal structure is stabilized by $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds involving the cation, anion and solvent water molecules (Table 2). Short intermolecular $O\cdots O$ contacts less than 3 Å, involving the solvent water O atoms, range from 2.722 (6) to 2.889 (9) Å.

Experimental

A mixture of Tb(NO₃)₃·6H₂O, tri(2-aminoethyl)amine and H₂pdc (molar ratio 1:1:3) in water–ethanol (1:1 ν/ν) was neutralized with aqueous NH₃·H₂O to pH = 7, and then refluxed with stirring at 333 K for 3 h. The resulting solution was left to stand at room temperature and allowed to evaporate slowly over a period of a few days for crystallization. Crystals of the title compound suitable for X-ray diffraction analysis were collected by filtration, washed with ethanol and dried in air.

Crystal data

$(C_6H_{21}N_4)[Tb(C_7H_3NO_4)_3]\cdot 6H_2O$	Z = 2
$M_r = 911.60$	$D_x = 1.761 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 10.538 (2) Å	Cell parameters from 38
b = 12.068 (3) Å	reflections
c = 15.747 (3) Å	$\theta = 4.1 - 15.5^{\circ}$
$\alpha = 87.31 (1)^{\circ}$	$\mu = 2.15 \text{ mm}^{-1}$
$\beta = 71.24(2)^{\circ}$	T = 296 (2) K
$\gamma = 65.66 (2)^{\circ}$	Triclinic, colorless
V = 1719.1 (6) Å ³	$0.58 \times 0.58 \times 0.48 \ \mathrm{mm}$
Data collection	
Siemens P4 diffractometer	$R_{\rm int} = 0.070$
ω scans	$\theta_{\rm max} = 25.0^{\circ}$
Absorption correction: multi-scan	$h = 0 \rightarrow 12$
(SADABS; Sheldrick, 1996)	$k = -13 \rightarrow 14$
$T_{\rm min} = 0.795, T_{\rm max} = 0.951$	$l = -17 \rightarrow 18$
6350 measured reflections	3 standard reflections
6011 independent reflections	every 97 reflections
5440 reflections with $I > 2\sigma(I)$	intensity decay: 6.6%
Refinement	
	TT () (11) (

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.089$ S = 1.036011 reflections 493 parameters H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0686P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 2.42 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -1.24 \text{ e } \text{Å}^{-3}$

Table	1
-------	---

Selected geometric parameters (Å, °).

Tb-O7	2.393 (3)	O3-C7	1.260 (5)
Tb-O3	2.398 (3)	O4-C7	1.244 (5)
Tb-O9	2.428 (3)	O5-C8	1.290 (5)
Tb-O1	2.431 (3)	O6-C8	1.229 (6)
Tb-O11	2.435 (3)	O7-C14	1.261 (5)
Tb-O5	2.448 (3)	O8-C14	1.236 (6)
Tb-N1	2.492 (3)	O9-C15	1.264 (5)
Tb-N3	2.499 (3)	O10-C15	1.239 (5)
Tb-N2	2.508 (3)	O11-C21	1.268 (5)
O1-C1	1.265 (5)	O12-C21	1.235 (5)
O2-C1	1.243 (5)		
O7-Tb-O3	76.76 (11)	O5-Tb-N1	73.52 (10)
O7-Tb-O9	75.65 (11)	O7-Tb-N3	71.48 (11)
O3-Tb-O9	78.48 (10)	O3-Tb-N3	135.41 (11)
O7-Tb-O1	145.15 (10)	O9-Tb-N3	64.02 (10)
O3-Tb-O1	127.82 (10)	O1-Tb-N3	74.02 (11)
O9-Tb-O1	85.11 (10)	O11-Tb-N3	64.31 (10)
O7-Tb-O11	92.44 (11)	O5-Tb-N3	135.46 (11)
O3-Tb-O11	148.33 (10)	N1-Tb-N3	123.68 (10)
O9-Tb-O11	128.12 (10)	O7-Tb-N2	63.94 (11)
O1-Tb-O11	76.83 (10)	O3-Tb-N2	72.80 (10)
O7-Tb-O5	128.33 (10)	O9-Tb-N2	134.45 (11)
O3-Tb-O5	88.92 (11)	O1-Tb-N2	140.41 (11)
O9-Tb-O5	149.74 (10)	O11-Tb-N2	75.70 (10)
O1-Tb-O5	81.12 (10)	O5-Tb-N2	64.39 (10)
O11-Tb-O5	74.46 (10)	N1-Tb-N2	118.99 (11)
O7-Tb-N1	135.31 (11)	N3-Tb-N2	117.31 (11)
O3-Tb-N1	64.06 (10)	C26-N4-C22	111.6 (4)
O9-Tb-N1	76.23 (10)	C26-N4-C24	112.7 (4)
O1-Tb-N1	63.99 (10)	C22-N4-C24	110.3 (4)
O11-Tb-N1	132.23 (10)		
N4-C22-C23-N5	-71.4 (5)	N4-C26-C27-N7	-62.7(5)
N4-C24-C25-N6	-179.1 (4)		

Table 2Hydrogen-bonding geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O13−H13A····O5	0.82 (4)	2.10 (3)	2.880 (5)	158 (8)
$O14-H14A\cdots O18$	0.82(5)	2.02 (5)	2.789 (8)	157 (3)
O16-H16AO9	0.83 (7)	2.01(7)	2.837 (5)	178 (8)
$N7 - H7B \cdot \cdot \cdot O10$	0.89	1.97	2.855 (5)	174
$N5-H5A\cdots O4^{i}$	0.89	2.19	2.979 (6)	147
$N5-H5B\cdots O17^{i}$	0.89	2.15	2.971 (7)	152
$N5-H5C \cdot \cdot \cdot O2^{ii}$	0.89	1.97	2.851 (5)	171
N6−H6C···O12 ⁱⁱⁱ	0.89	1.96	2.840 (5)	172
$N6-H6B\cdotsO11^{ii}$	0.89	2.12	2.960 (5)	158
N6-H6A···O15 ⁱⁱ	0.89	2.44	2.838 (5)	107
$N7 - H7C \cdot \cdot \cdot O2^{ii}$	0.89	1.98	2.851 (5)	165
$N7-H7A\cdots O13^{ii}$	0.89	2.13	2.977 (6)	160

Symmetry codes: (i) 1 - x, 1 - y, -z; (ii) 1 - x, -y, -z; (iii) 1 + x, y, z - 1.

Only three H atoms of the water molecules were located from successive difference Fourier maps and they were refined isotropically with restrained bond lengths. H atoms of the pyridine ring and $(C_6H_{21}N_4)^{3+}$ moiety were positioned geometrically and refined using a riding model, with C-H = 0.93 Å for pyridine, N-H = 0.89 Å and C-H = 0.97 Å for the $(C_6H_{21}N_4)^{3+}$ moiety, and with $U_{iso}(H) = 1.2U_{eq}$ of the parent atoms. The highest peak and deepest hole in the final difference map were located at distances less than 1.1 Å from the Tb atom.

Data collection: *XSCANS* (Siemens, 1991); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Sheldrick, 1997*a*); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s)

used to refine structure: *SHELXL*97 (Sheldrick, 1997*b*); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXTL*.

References

- Chessa, G., Marangoni, G., Pitteri, B., Bertolasi, V., Gilli, G. & Ferretti, V. (1991). *Inorg. Chem. Acta*, **185**, 201–210.
- Gielen, M., Joosen, E., Mancilla, T., Jurkschat, K., Willem, R., Roobol, C., Bernheim, J., Huber, F., Preut, H., Hoffmann, E. & Mahieu, B. (1987). *Main Group Element Chem.* 10, 147–167.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Håkansson, K., Lindahl, M., Svensson, G. & Albertsson, J. (1993). Acta Chem. Scand. 47, 449–455.
- Koman, M., Melnik, M. & Moncol, J. (2000). Inorg. Chem. Commun. 3, 262– 266.

Lainé, P., Gourdon, A. & Launay, J.-P. (1995). *Inorg. Chem.* 34, 5156–5165. Matković-Čalogović, D., Popović, J., Popović, Z., Picek, I. & Soldin, Ž. (2002). *Acta Cryst.* C58, m39–m40.

Nathan, L. C. & Mai, T. D. (2000). J. Chem. Crystallogr. 30, 509-518.

- Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 305-307.
- Pocker, Y. & Fong, C. T. O. (1980). Biochem. J. 19, 2045–2050.
- Preut, B. H., Huber, F. & Hoffmann, E. (1988). Acta Cryst. C44, 755-756.
- Scapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081–15088.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997b). SHELXL97. University of Göttingen, Germany.
- Siemens (1991). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Takusagawa, F., Hirotsu, K. & Shimada, A. (1973). Bull. Chem. Soc. Jpn, 46, 2020–2027.